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Abstract—One-class classification (OCC) is an important prob-
lem with applications in several different areas such as outlier
detection and machine monitoring. Since in OCC there are no
examples of the novelty class, the description generated may be
a tight or a bulky description. Both cases are undesirable. In
order to create a proper description, the presence of examples of
the novelty class is very important. However, such examples may
be rare or absent during the modeling phase. In these cases,
the artificial generation of novelty samples may overcome this
limitation. In this work it is proposed a two steps approach
for generating artificial novelty examples in order to guide
the parameter optimization process. The results show that the
adopted approach has shown to be competitive with the results
achieved when using real (genuine) novelty samples.

I. INTRODUCTION

In many pattern recognition problems, there are no explicit
rules to distinguish objects belonging to different classes;
however, samples of these objects may easily be gathered.
In these cases, the problem is solved by creating a model of
classifier from a limited set of training samples. The goal is
to obtain models of classifiers able to correctly predict the
classes of objects unknown during the modeling phase.

Regarding novelty detection problems, an object of the
novelty class can be defined as one that does not resemble
any object presented to the classifier during the training phase.
As an example, suppose a model of a one-class classifier built
aimed at recognizing dogs, cats, birds and bears. If any of these
animals is presented to this model, the expected outcome is
normal, nevertheless, if an unknown animal (e.g., a rabbit) is
presented to this model, the expected outcome is novelty. One
of the shortcomings of novelty detection methods based on
Signature Detection [19] is the need samples of the novelty
class during the training phase. A previous work has already
advocated that the usage of samples of the novelty class
for modeling the novelty distribution may not be adequate
since these samples are rare and may not represent well the
whole novelty distribution [4]. So, it is important to investigate
methods that use only normal data during the training phase,
this is the case of the One-class Classification paradigm [11]
[12] [6] [3].

During the modeling phase, the parameters of most of the
algorithms for pattern recognition need to be chosen such
that the final model perform well for real cases. Most of the

works where the parameters are automatically adjusted use
some type of optimization method such as Genetic Algorithms
(GA) or Particle Swarm Optimization (PSO) [15] [16] [17].
In [17], Yongqi proposes a hybrid complex particle swarm
optimization algorithm to tune the parameters of a Least
Squares Support Vector Machine (LSSVM). In [15], Chou
et. al. integrated Genetic Algorithms with SVM classifiers
to solve the problem of predicting the risk of Public Private
Partnership (PPP) which is a financial strategy for stimulating
private investments in public works. Both works try to opti-
mize the classifier parameters (in this case, a SVM) by using
optimization methods based on local search. In these cases, the
search for the optimal parameters is performed considering an
objective function that indicates whether or not the method is
performing well for all the classes.

A major issue for OCC methods is to obtain valid samples
of the novelty class in order to efficiently tuning the classifiers
parameters. These samples are rare and may not be significant,
as aforementioned. So, in a scenario where there are no
samples of the novelty class it is not easy to check whether or
not the model is able to fit the normal data rejecting unknown
objects as well. In this case, the adjustment of the classifier
parameters may lead to three cases: (i) an overfitting of the
training set (i.e., the model is highly adjusted to the normal
samples) - (Figure 1.a); (ii) a model properly adjusted to the
training set - (Figure 1.b); and (iii) a large model (i.e., the
model underfits the normal data) - (Figure 1.c).
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Fig. 1. Examples of one-class models with different degrees of adjustment to
the normal data. a) - overffiting model, b) - proper model and c) - underfitting
model.



One-class classifiers do not need novelty samples during the
training phase, however, these samples are important to vali-
date the model. Therefore, this work proposes a methodology
for artificially generating data from the novelty class (positive
class) such that this data can be added to the validation set for
guiding the parameter optimization process. So, the validation
set will contain genuine normal data and artificial novelty data
(diferently from [3], where the validation set was formed only
by genuine samples) such that the optimal parameters are
the ones that produce the model with best accuracy for the
validation set. Notice that in many problems the validation
using only genuine novelty samples (e.g., from [3]) cannot be
applied. This occurs in problems where there is no novelty
samples available in the training phase, or these samples
are very rare. For this work, the methods One-class SVM
(OCSVM) [2] and the method Feature Boundaries Detector for
OCC (FBDOCC) [3] were applied. Notice that the classifier
One-class Random Forest [1] was not employed in this work
because it didn’t obtained good results in [3].

This paper is organized as follows: Section II briefly dis-
cusses the novelty detection problem and the computational
methods employed in this work; Section III presents the
proposed methodology for generating novelty data; Section IV
discusses the experiments and results; and Section V presents
the conclusion and future works.

II. MATERIALS AND METHODS

In multi-class classification, data from two or more classes
are available during the modeling phase and the decision
boundary is supported by examples of each class. On the other
hand, many problems such as machine monitoring and medical
diagnosis may have a lot of normal data. Yet, usually it is
very expensive to obtain data from an abnormal behavior of
these monitored systems. For instance, machine fault examples
may not exist and samples of the occurrence of some diseases
may be rare. In such cases, the natural approach is to build
a description of the normal data (i.e., a boundary surrounding
the objects that represents the normal events and that are
available during the modeling phase). Subsequently, abnormal
events are detected when an event lies outside this description
of the normal data. This is the basic concept of One-Class
Classification.

It is important to point out that the novelty detection task
is highly related to OCC, however, it can also be performed
by methods that use examples of the novelty class during the
modeling phase [19]. In [18], a survey of novelty detection
is provided whereby several techniques are presented along
with their advantages and disadvantages. These techniques
comprise one-class and signature based classifiers[19] (where
information regarding the novelty class is provided during the
training phase), yet, they share the same purpose, namely to
detect unusual objects (novelty detection).

This Section provides basic information about the classifiers
used for novelty detection and the optimization method used
for tuning the parameters of these classifiers.

A. Methods For Novelty Detection

With the aim of assessing the performance of the proposed
approach for generating artificial samples, two one-class clas-
sification methods were employed: One-class SVM (OCSVM)
[2] and Feature Boundaries Detector for OCC (FBDOCC) [3].

1) One-class SVM: Based on SVMs framework, Scholkopf
et. al. [2] have proposed the one-class SVM (OCSVM). In
OCSVM, the kernel function maps the training objects to a
feature space. In the feature space, OCSVM then recognizes
the origin as the only member of the second class (the novelty
class). In contrast to the SVDD (Support Vector Data Descrip-
tion) [6] which tries to find the less bulky hyper sphere which
contains almost all of the training objects, the OCSVM tries
to find the hyper plane which separates the training data with
maximal distance from the origin in the feature space. The
goal is to maximize the margin of separation to the origin. As
in the multi-class SVM, slack variables denoted by ~ξi enable
some training objects to fall outside the side of the hyper
plane which represents the normal class (i.e., misclassifies
some training objects). A training sample is a support vector
when it is misclassified or falls inside the hyper plane. When
using a non-linear kernel such as a Gaussian function, both
methods (One-class SVM and SVDD) are equivalent [5].

2) Feature Boundaries Detector for OCC: In [3], Cabral
and Oliveira introduced the novelty detection method Feature
Boundaries Detector for One-class Classification (FBDOCC).
The underlying intuition is to explore all feature dimensions
of the problem for each instance in the training set (which
contains only instances of the normal class) in order to find
the best fitting boundaries for encompassing the normal data
distribution. Adopting the Euclidean space, the FBDOCC
generates 2l new artificial prototypes for each training instance
ti in a relatively small distance (defined by the parameter r)
to the respective training instance. Each artificial prototype
pj is aimed at representing a piece of the limit between the
normal and the abnormal classes. The idea is to generate
one hyper sphere with radius th for each prototype pj and
check whether or not there is any training instance (except
the instance which generated the prototype) inside this hyper
sphere. If all the training instances ti are located outside the
hyper sphere defined by pj , then: (i) information about pj
is stored in order to reproduce it as a positive prototype in
the test phase and (ii) the training instance which generated
this prototype is added to the set of negative instances. Once
information of one of the 2l artificial prototypes is stored,
the remaining prototypes for the current training instance are
discarded. The positive prototypes define the novelty class
whereas the set of negative prototypes represents the normal
class.

For further information, please refer to [3].

B. Local Search For Finding the Optimal Parameters

In this work, the search method Particle Swarm Optimiza-
tion (PSO) [20] was employed to conduct the search for
the optimum parameter set of each OCC classifier (OCSVM
and FBDOCC). This technique is usually aimed at finding



Fig. 2. Procedure to build artificial samples reducing the overlapping between the classes. a) the histogram of the frequencies of values for the considered
feature; b) the same histogram of a), however with the frequencies scaled between 0 and 1; c) the complementary histogram of b); and c) the roulette used
in the roulette wheel selection.

optimal solutions for non-linear problems. Inspired by the
social behavior of a group of birds, the main intuition behind
the PSO is to build a set (population) of particles to simulate
the movements performed by the birds while searching for
food in a specific region. PSO explores the social behavior
of an intelligent set of individuals along with their ability
to communicate to find a global solution. Each PSO particle
represents a solution (model) in an n-dimensional space, where
n stands for the number of parameters to be optimized.

In the standard implementation of the PSO, particles move
inside the multi-dimensional search space using a combination
of attraction to the best solution found by this individual
particle and an attraction to the best particle belonging to
its neighborhood [23] [21]. A neighborhood is defined as
a subset of the swarm whose particle is able to establish
communication. The swarm moves in the search space by
updating the velocity and position of each particle [22].

III. PROPOSED APPROACH

This work proposes the use of a methodology to generate
artificial samples of the novelty class so that these samples
tightly encompass the normal data.

The generation of the artificial novelty samples is conducted
in two phases:

1) Phase 1 - Generation of novelty samples based on the
histogram of the values for each feature of the problem;
and

2) Phase 2 - Removing the artificial samples nearer than a
given threshold to the normal samples;

The first phase tries to generate artificial samples in regions
where the normal samples are absent, however, this phase does
not extinguish the occurrence of novelty samples in normal
regions. The second phase removes these misplaced samples.
Following, each phase of the approach is detailed.

A. Phase 1

This phase of the methodology was proposed by Désir et
al. in [1]. In [1], the authors build artificial samples of the
novelty class in four steps (depicted in Figure 2). Notice that
these phases are executed for one feature of the problem per
time.

Initially, a histogram of the values of all the normal data for
one feature is created. The number of bins of the histogram
can be chosen as in [1]. The blue bar represents the number of
normal samples (frequency) that lie in the bin interval whereas
the red bar represents its compliment (considering the upper



bound as the highest frequency plus 10%). This is not a critical
parameter. This step is depicted in Figure 2.a).

Figure 2.b) depicts the second step of this phase. This
step consists in normalizing the frequencies (obtained in the
previous step) between the range 0 and 1.

In the third step, Figure 2.c), the complementary histogram
of the second step is obtained. This histogram is used to obtain
the probability of an artificial value fall in a range of values.

The fourth step consists in building a pie chart where each
slice represents a bin in the complementary histogram. The
summation of the probabilities of all the bins shown in Figure
2.c) exceeds 1, so, all the probabilities are scaled such that
their summation is equal to 1. In order to generate an artificial
value, a random number belonging to the uniform distribution,
between 0 and 1, is then generated and the roulette wheel
selection method is used to pick the range in which the value
must be in.

This roulette is used to generate as many values of one
feature as needed. In order to build new artificial samples,
and let m be the number of features, m roulettes must be
generated and the values returned by these roulettes must be
combined in order to generate a new sample.

Notice that, this method does not eliminate the occurrence
of novelty samples wrongly inside the normal distribution,
however, the number of such samples is considerably less
in comparison to a random generation. In other words, the
approach decreases the overlapping rate.

B. Phase 2

In this phase, the minimal distance (threshold) by which an
artificial sample must be nearer to a nearest neighbor normal
sample is found. To this aim, for each normal sample, the
distance to its respective nearest neighbor is computed and
stored in a vector. So, if the dataset contains 100 samples,
100 distances will form a distribution of distances that can
be considered as belonging to a Gaussian distribution. So, in
this distribution, the particular distance where the cumulative
probability exceeds 95% is used as the threshold. The percent-
age 95% was used for all the experiments and was shown to
be a non critical parameter.

Figure 3 shows an example where a CDF was built and the
red line shows that around 95% of the distances are less than
0.04. So, this value can be used as a threshold to remove arti-
ficial novelty samples whose distances to the nearest neighbor
in the normal class are less than this threshold.

Once the two phases were carried out, the final dataset
is supposed to be free of class overlapping. The Figure 4.a)
shows the data after phase 1. In this case, overlapping samples
can be seen. Figure 4.b) shows the result of second phase.
The dataset is now a two-class dataset with non-overlapping
classes.

Since the methods considered for our experiments belong to
the OCC paradigm, the artificial information cannot be added
to the training set. However, it can be used in the validation set
(assuming that the Hold-out validation is employed) to guide
the optimization process to a desired goal.

Distances to the nearest neighbors (training)
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Fig. 3. Cumulative density function for one dataset.

IV. EXPERIMENTS

This Section reports on experiments carried out to evaluate
the performance of the proposed approach for generating
novelty samples for the validation set. The datasets used for
training and testing the models are rigorously the same used
in Cabral and Oliveira [3]. The experiments were conducted
using ten datasets, eight of them from the UCI repository [7]
and two bi-dimensional datasets artificially generated (Gaus-
sian Distributions and Banana). For the multiclasses data sets
(Iris and Wine), one of the classes was picked as the novelty
class and the others were merged to represent the normal class.
This is similar to the procedure used by Oliveira et al. [8], Cao
et al. [9] and Tax [6].

For the Artificial Dataset, instances belonging to the normal
class were generated by a Gaussian distribution with 0 mean
vector and covariance matrix with both entries 4; the samples
belonging to the novelty class were generated by a Gaussian
with mean vector with both entries 4 and covariance matrix
with both entries 4. The Banana shaped dataset was generated
by the DDTools toolbox [10]. These datasets are particularly
important because they are bi-dimensional and thus it is
possible to visualize the behavior of the algorithm and to
validate it.

The experiments were performed by dividing each dataset
into three sets: training, validation and test. The training set
contains 50% of the available normal data while the validation
and test sets contain 25% each. The training and test set are
exactly the same ones used in [3]. The validation set differs
only in the novelty samples. In [3], the validation set contained
real samples of the novelty class while in the present work,
the validation set contains only artificially generated novelty
samples.

To assess the generalization performance of the methods,
the average of the Mathews Correlation Coefficient (MCC)
[24] of each model was used. Even being the Area Under (the
ROC) Curve one of the most adopted metrics for assessing



a)                                                                               b)

Fig. 4. Banana shaped dataset after the first phase of the artificial generation (a) and after the second phase (b).

the generalization power of One-class methods, in cases of
unbalanced data, the classifier may yield a good AUC value
by misclassifying a high rate of the minority class. In such
cases, the MCC metric detects the misclassification of some
of the classes and decreases the score of the model. The MCC
value is obtained by picking up an operational point of the
ROC curve and evaluating the error rate of the model for that
point. For all the experiments, the chosen operational point
is the nearest point to the coordinate (0,1) in the ROC space
(i.e., the operational point which yields the lower error rate).
The Equation 1 shows how to compute the MCC. The range
of possible values for the MCC varies from -1 to 1.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

In Equation 1: TP represents the number of True Positive
objects; TN represents the number of True Negative objects;
FP represents the number of False Positive objects; and FN
represents the number of False Negative objects. Notice that
the class POSITIVE is the same as the novelty class and the
NEGATIVE class is the same as the normal class.

Table I shows the averages and the standard deviations of
the MCCs obtained by the experiments carried out with the
employed OCC methods FBDOCC and OCSVM. The first two
columns present the results obtained by the classifiers applied
to the proposed approach, the next two columns present the
results obtained in [3] and the last two columns contains
the percentage difference between [3] and the present work.
The results shown in Table I illustrates how similar are the
results obtained by a modeling using real novelty data for
validation and a 100% one-class modeling. In the case of
the FBDOCC, the proposed approach achieved an overall
result only 3% worse than [3] and the results achieved by
the OCSVM performed only 5% worse.

In order to better illustrate the results from Table I, Figure
5 presents a bar chart containing the average MCCs of the
experiments in this work and obtained in [3] for the FBDOCC

method. In this Figure it is possible to verify that our approach
yielded similar results to the ones in [3] for all problems,
except Wine(3). In this case, our approach yielded a result
13% worse than [3].

Fig. 5. Comparison of the results obtained by the FBDOCC using real novelty
data[3] and artificial novelty data in the validation set.

Figure 6 shows another bar chart containing the average
MCCs of the experiments executed in this work and in [3] for
the OCSVM method. For this method, it is possible to verify
that our approach worked similarly to [3] in seven out of 10
problems. For the problems Iris(2), Wine(2) and Wine(3) the
results of the OCSVM of this work were considerably worse
than [3].

Fig. 6. Comparison of the results obtained by the OCSVM using real novelty
data[3] and artificial novelty data in the validation set.



TABLE I
MCCS OBTAINED BY THE EXPERIMENTED METHODS USING THE VALIDATION SET COINTAINING GENUINE NOVELTY DATA AN ARTIFICIAL NOVELTY

DATA.

Dataset Proposed Approach Results from [3] Percentual difference
FBDOCC OCSVM FBDOCC OCSVM FBDOCC OCSVM

Banana 0.894 (0.037) 0.862 (0.042) 0.891 (0.218) 0.915 (0.167) 0.15% -2.65%
Gaussian Distributions 0.703 (0.062) 0.687 (0.094) 0.785 (0.232) 0.725 (0.200) -4.10% -1.90%

Winsconsin Breast Cancer 0.936 (0.018) 0.852 (0.054) 0.953 (0.137) 0.943 (0.125) -0.85% -4.55%
Iris (1) 1.000 (0.000) 0.884 (0.084) 1.000 (0.000) 1.000 (0.000) 0.00% -5.80%
Iris (2) 0.776 (0.124) 0.407 (0.454) 0.832 (0.275) 0.844 (0.230) -2.80% -21.80%
Iris (3) 0.863 (0.054) 0.782 (0.065) 0.918 (0.213) 0.847 (0.259) -2.75% -3.25%

Wine (1) 0.785 (0.054) 0.748 (0.0786) 0.844 (0.232) 0.854 (0.195) -2.95% -5.30%
Wine (2) 0.534 (0.131) 0.353 (0.104) 0.646 (0.301) 0.548 (0.290) -5.60% -9.75%
Wine (3) 0.216 (0.200) -0.148 (0.115) 0.482 (0.377) 0.121 (0.417) -13.30% -13.45%
Banknote 0.948 (0.026) 0.937 (0.035) 0.975 (0.297) 0.979 (0.168) -1.35% -2.10%

V. CONCLUSION

In this paper we have proposed the use of an approach for
artificial generation of samples of the novelty class. The idea
is to use these artificial samples to form a validation dataset to
be used by the optimization method for finding the best model.
Since examples of the novelty class are rare or they don’t exist
during the modeling phase, the use of artificial samples can
support in building a tight closed description of the normal
class. Furthermore, the adopted approach extinguishes the
need of the manual search for the best parameter configuration.

Our simulations using real and synthetic data sets have
shown that the proposed approach has achieved a good perfor-
mance in terms of MCC in comparison with the experiments
carried out in [3].The advantage of our proposal, in compar-
ison to the method of ref. [3], is that it can be applied to
model selection of OCC in datasets that do not have or have
few novelty samples. Considering the method FBDOCC, in
nine out of ten data sets our approach yielded similar results
to [3] - where genuine examples of the novelty class were used
in the validation dataset. Considering the OCSVM method, in
seven out of ten data sets our approach yielded similar results
to [3].

Our future works include the improvement and development
of new methods for generating artificial examples of the
novelty class for batch and online problems.
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