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Abstract—It is a great challenge to companies, governments
and researchers to extract knowledge in high dimensional
databases. Discriminative Patterns (DPs) is an area of data
mining that aims to extract relevant and readable information in
databases with target attribute. Among the algorithms developed
for search DPs, it has highlighted the use of evolutionary
computing. However, the evolutionary approaches typically (1)
are not adapted for high dimensional problems and (2) have many
nontrivial parameters. This paper presents SSDP (Simple Search
Discriminative Patterns), an evolutionary approach to search the
top-k DPs adapted to high dimensional databases that use only
two easily adjustable external parameters.

I. INTRODUCTION

Knowledge discovery in high dimensional databases is a
challenge for companies, governments and researchers. Mi-
croarray databases are an important example of high dimen-
sional problem. Microarray is a technology that allows mea-
suring the expression thousands of genes in one experiment.
Finding some combination of genes whose expression levels
can distinguish some groups of patients (cancer vs. healthy,
for example). Since microarray technology has developed
databases for several important studies in Bioinformatics [1]
[2] [3] [4] [5]. Microarray databases is having a revolutionary
impact on molecular biology [2].

Discriminative Patterns (DPs) aims to find humanly inter-
pretable subgroups where the presence of a label vs. others
is exaggerated. From this, is possible to generate insights
about a problem or just explain it in a simple way [5]. DPs
have evolved rapidly with different terminologies (Subgroups
Discovery [6] [7], Emerging Patterns [8] and Contrast Sets
[9D.

However, mining best DPs in high dimensional databases
is often computationally infeasible. In this way it highlights
the development of heuristic algorithms based on Evolutionary
Computing [10] [11] [12] [13] [14] [15] [16] and Beam Search
[17] [18] [19] [20]. But none of evolutionary approach has
been developed with focus on very high dimensional problem.
Besides that, they use complex parameters and the user has
no control over the amount of returned DPs.

This paper presents the SSDP (Simple Search Discrimi-
native Patterns), a DPs mining approach focused on high
dimensional problem based on Evolutionary Computing and
Beam Search. SSDP uses simple parameters and returns the
top-k DPs, where k is chosen by user. SSDP was developed
in special for microarray databases, but it is a general solution
for high dimensional problem.

Thus, we hope this work contributes to knowledge discovery
task in Bioinformatics and other high dimensional problems.
This paper is organized as follows. Section II summarizes
the main DPs concepts. The Section III presents some related
work, followed by Section IV, where the SSDP approach is de-
scribed in detail. Section V shows the experiments and Section
VI the results. Finally, Section VII presents the conclusion.

II. DISCRIMINATIVE PATTERNS (DPS)

The DPs problem can be defined as follows. Let D be a
database where D7 are positive examples (research target)
and D~ the negative (other examples). DPs aim to find groups
where the presence of positive examples is disproportionate in
relation to negative. A DP is formed by one or more items
(features). Each item consists of a pair (attribute,value).
The universe of all possible items of D is given by I =
{i1,42,...,47}. A three dimensionality DP, for example, can
be represented as follows: dps = {iq, i, .}, where dps C I.

The analysis of all possible DPs for a given problem is
usually an infeasible task. Thus, during the search process, the
DPs are evaluated automatically (using one or more evaluation
metrics). There are several types of evaluation metrics, but
there is no consensus about the best one. This choice often
depends on the problem or specialist convictions. In this way,
it is important that the DPs search algorithms accept different
options of evaluation metrics to meet user needs.

The metrics used to evaluate this work are described in
Table I, where TP and FP are true positives and false
positives DPs, k is the number of returned DPs and |D],
|D*| and | D~ | are number of the total, positive and negative



examples. Several other evaluation metrics can be found in [5]
and [7].

TABLE I
DISCRIMINATIVE PATTERNS EVALUATE MEASURES.

Equation Description

Trade off between TP and FP
(18]

Qg = %, default g = 1

+
WRAcc = TP" $f 2( T PT+P P~ %) Relative DP accuracy
[21]

DiffSup = Mg—f‘ — % Difference between positive

and negative support [9]

supp = % Average positive

support [12]

conf = —LP__ Confidence [7]

Positive support by
set of DPs (D covered
percentage) [12]

size Average size of top-k DPs

The DPs search algorithm usually return the best DPs in
one of two ways: (1) based on constraints, where it returned
DPs with some constraint, as minimum support and minimum
confidence and (2) based on top-k, where it returned the % best
DPs determined according to a given quality function. Both
options have their relevance depending on the analysis goals,
but the top-k approach provides more flexibility for users [6].

There are several algorithms for DPs mining [5] [7]. The
use of thresholds parameters are often in these approaches.
However, setting values as minimum support and confidence
is not a simple task. If it is too large, the algorithm can not
return any results, if it is small can not represent a useful
constraint.

III. RELATED WORK

There are several DPs mining approaches based on Evolu-
tionary Computing [10] [11] [12] [13] [14] [15] [16]. However,
most of the performance tests on evolutionary approaches were
directed to problems with less than 40 attributes and none of
them was validated to thousand dimensionality order.

Some important features, as initial population, show that
some evolutionary approaches would have difficulty in high
dimensional databases. In [10] [11] [12] 75% of individuals
are generated up to 25% of items ¢ € I. Already [16] uses
between 1% to 50% of the attributes. This type of initialization
can be problematic in high dimensional databases. A problem
where |I| = 10000, for example, an individual using 5%
of I possibilities represent a DP with 500 dimensions. This
hardly represents a valid solution and may hinder the algorithm
convergence.

The individual representation is another example. In evolu-
tionary approach it is often the use of fixed size individuals
equal to || [10] [L1] [12] [14]. But in high dimension
problems the items that are not used by best DPs is often
more than 99%, the most genes is zero. Other approaches
using dynamic size tree generated by grammars [15] [16], but
to build grammars can not be a simple process.

Another feature present in some evolutionary approaches is
the number and complexity of the parameters. Table II sum-
marizes some of the parameters required by six evolutionary
approach. The definition of such parameters is not a trivial
task and may hinder the use of these algorithms. It is also
common in current evolutionary approaches the user has no
control over the amount of DPs returned.

TABLE II
SUMMARY OF PARAMETERS USED BY 6 EVOLUTIONARY TECHNIQUES TO
SEARCH DISCRIMINATIVE PATTERNS.

SDIGA
[10]

MESDF
(11]

NMEEF
[12]

EDER  GP3
[14]  [15]

FuGeP
[16]

Parameter

Fitness X X X
Linguistic X
labels
Crossover
Mutation
Population
Elite size
Evaluations
Generations
Confidence
Support X
Sensitivity

FHX R HRR XX
XX XXX XX
TR XN

XX XX

oo X MM

Total 6 7 7 4 4

Finally, few studies have considered the efficiency of evo-
lutionary methods with respect to processing time. In high
dimensional databases context, time is often critical. In the
next section is explained in detail SSDP algorithm, an evo-
lutionary approach that has as main features: (1) focused on
high dimensional problems, (2) uses only k£ and the metric
evaluation as external parameters and (3) it allows the user to
choose the number of DPs want to receive.

IV. SSDP: SIMPLE SEARCH DISCRIMINATIVE PATTERNS

SSDP uses important concepts of different search algo-
rithms, they are:

e In [22] was presented an evolutionary algorithm to
search Diverse-Frequent Pattern (a type of patterns si-
milar to DPs) in high dimensional databases. The al-
gorithm includes to the next generation the best in-
dividuals from old population FP,;; and others newly
created by genetic operators (P, <— crossOver(P,4) and
P, < mutation(P,4)), where the size of populations
are equal (|Pyg| = |P:] = |Pnl). That is, Ppey
best(P,iq, Pey Pyy). SSDP uses this process to generate
new populations.

e Beam Search is an efficient search strategy used in some
DPs algorithms, like Subgroup Miner [17], SD [18], CN2-
SD [19] and RSD [20]. There are two important features
in Beam Search algorithm. One is to initialize the search
from all one dimension DPs. This ensures that all items
1 € I are considered in the search. The other feature is
that the searches in the dimension d are made from the
best DPs smaller than d. In SSDP the initial population
is formed by all one dimension DPs and the genetic
operators expand the search to other dimensions.



o SD [18] is an algorithm that ensures that all DPs stored
along the search are relevant. A solution dp,, is considered
irrelevant to a set DP if there is dp, € DP that
dp, covers a subset of the positive samples and all
the negative examples of dp,. With this concept the
algorithm eliminate redundancies among the top-k DPs.
SSDP algorithm uses this concept only for &£ best DPs.

The most important parts of the SSDP algorithm are de-
scribed below:

A. Representation

The individuals have variable size and represent only items
used by DP. Thus, each individual is represented by integers
(or index) that is the item position ¢ in I. For example, dp =
{2043, 213} is a dp, composed by items at position 2043 and
203 from 1.

B. Initialization and population size

The initial population is composed of all one dimentional
possible DPs. That is, for each ¢ € I an individual is created
(dp1), where I is all possible items (attribute value pairs) in
the database. It represents a new way for initial population in
evolutionary approach for DP problem.

C. Genetic operators

o Crossover: there are two possibilities: (1) crossOverAND,
when two individuals unite their genes creating a new
individual (used only in the first generation) or (2)
crossOverUniform, where two individuals generate two
new by uniform crossover with 50% mixing ratio.

o Mutation: there are two possibilities: (1) a new item is
selected and added to the individual or (2) an old gene is
replaced by new item. Both options with 50% probability.

e Selection: by binary tournament.

In each generation n new individuos are generated ex-
clusively by crossover and other n exclusively by mutation.
That is, SSDP considers the same importance to mutation
and crossover operators. This is because, besides providing
diversity, mutation is used to find unlikely DPs.

D. Stopping criterion

The algorithm stops when there are no changes in the top-k
DPs for three consecutive generation.

E. Parameters and fitness

SSDP does not use some common parameters of other evo-
lutionary DPs mining approaches, as mutation and crossover
rate, population size and minimal support. It uses only two
easily adjustable external parameters, they are:

¢ k: number of DPs returned to the end of the process.
The k allows the user to have control over the amount of
information that he wants to receive. It is also an intuitive
parameter and does not require technical knowledge.

« Evaluating measure: function to evaluate DPs quality. The
more functions, the more the algorithm becomes flexible
for the user. SSDP theoretically allows the use of any

objective function. Currently SSDP implementation has
the following possibilities: @4, W RAcc and Dif fSup.
The genetic algorithm uses the evaluating measure as
fitness.

F. Algorithm

SSDP works with five population, where P, P., P,, and P,
size are |I| and Py size is k. They are:

e P: current population.

o P,.: generated from P by crossover.

e P,,: generated from P by mutation.

o P.: generated by best individuals of P, P, e P.. It does
not require that individuals are unique.

e Py keeps the best k individuals that are relevant. An
individual is considered irrelevant in relation to Py if it
is a subset of positive and superset of negative examples
for any dp € P.

SSDP algorithm starts for all dp; possibilities and the ge-
netic operators expand the search to larger dimensions. Thus,
at first, the searches tend to be directed to larger dimension
as best fitness individuals are found. In a second moment the
individuals are becoming very specific, then, the fitness tends
to worsen and the algorithm can return the searches for smaller
dimension or converge.

The Algorithm 1 describes the SSDP approach. In it, the
kBestRelevants function returns the best relevant individuals.
Already the best function accepts repeated and not relevant
individuals as a way to reduce the computational cost.

Algorithm 1 SSDP pseudocode
Require: %, Objective Function
P < all dpl possibilits (¢ € I)
Py, + kBestRelevants(P)
while P, not improve three times in a row do
if generation == 1 then
P. + crossOver AND(P)
Px < best(P, P.)
else {generation > 1}
P, < crossOverUni form(P)
P, < mutation(P)
Px + best(P, P., Py,)
end if
update( Py, Py)
P + Px
end while
return P

V. EXPERIMENTS

The experiments start from 21 original microarray
databases, described in Table III. Such databases are available
in the package datamicroarray [4] from R software [23]. For
each database the majority class was considered the target of
searches (p) and other examples were labeled as negative (n).
The attributes of databases are all numeric. They have been



TABLE III
MICROARRAY DATABASES DESCRIPTION

Name N° Examples  N° Attributes N Labels
alon 62 2,000 2
borovecki 31 22,283 2
burczynski 127 22,283 3
chiaretti 111 12,625 2
chin 118 22,215 2
chowdary 104 22,283 2
christensen 217 1,413 3
golub 72 7,129 3
gordon 181 12,533 2
gravier 168 2,905 2
khan 63 2,308 4
nakayama 105 22,283 10
pomeroy 60 7,128 2
shipp 58 6,817 2
singh 102 12,600 2
sorlie 85 456 5
subramanian 50 10,100 2
sun 180 54,613 4
tian 173 12,625 2
west 49 7,129 2
yeoh 248 12,625 6

discretized using methods based on frequency and width by
2, 4 and 8, totaling 126 discretized databases.

Each experiment was repeated 30 times, with the objective
function @, (¢ = 1) and K = {5,10,20,50}. SSDP perfor-
mance was compared to the following algorithms:

o« RandomIM e Random2M: one and two million DPs
randomly generated. The purpose of this comparison is
to validate SSDP heuristic.

o ExaustiveK: DPs with highest fitness among all combi-
nations of up to four dimensions, but using only the k
best items. The purpose of this comparison is to validate
the SSDP ability to find non-trivial DPs.

e SD-adapted: SD algorithm was adapted to search the
same types of rules of SSDP approach. The SD is based
on Beam Search. The aim is to confront SSDP with
a competitive classical SD mining approach. SD used
the following parameters: beamWidth = 2 % k and

minimumSupport = ‘\g‘p\’ as indicate by author [18].

VI. RESULTS

The results were divided into two parts. In first part the aim
is to evaluate the SSDP search strategy. In the second the aim
is to evaluate SSDP performance.

A. Validation SSDP search strategy

SSDP starts the search considering all items possibilities
1 € I. Table IV shows the average size frequency of top-50
DPs from 126 databases. In 18 of them the top-50 DPs were
found exclusively in the first dimension. At the same time, in
15 of them the average size was above 3. This shows that is
unpredictable to know what dimensions are the best DPs. In
this context, boot searches by the size of d = 1 and evolve
into other dimensions d prioritizing the well evaluated DPs
seems to be an effective strategy.

TABLE IV
AVERAGE SIZE FREQUENCY OF TOP-50 DPS IN 126 microarray DATABASES

Average size  Frequency
[1;1] 18
(1;2] 54
(2;3] 39
(3:4] 14
(4;5] 1

Figure 1 shows the evolution of DPs average size in popula-
tions P and Py, for k = 50 from West database. So, in the first
generation P and Py are just dp;. After that poorer quality dp,
are replaced by higher best quality DPs. The P behavior shows
that SSDP tends to evolve searches for larger dimensions but it
can change the direction to smaller dimensions when required.

Population
- P
A= Pi

0 10 20 30
generation

Fig. 1. DPs average size evolution in populations P and Py, for £ = 50
from West database.

B. Performance Analysis

Figure 2 and Figure 3 show respectively the average (), and
time from SSDP, SD, RandomIM, Random2M and ExaustiveK
for K = {5,10,20,50} in 126 microarray databases. SSDP
and SD obtained better average (), then random approach for
all k values. The SSDP processing time is close to Ramdom2M
for all k value, while SD used more time them Ramdom2M
for k = {20,50}. So, at first analysis it is possible to validate
the heuristic SSDP. SSDP obtained better results than random
approaches with closed time processing.

At second analysis it is possible to validate the SSDP
regarding the ability to find nontrivial relevant DPs. Figure 2
shows that SSDP obtained better average (), then ExaustiveK
for all k value. This feature also applies to the SD algorithm.

Finally, the comparison with the SD approach shows that
SSDP is a promising approach in the context of top-k DPs
for high dimensional databases. This is because the SSDP got
considerably better DPs for all k£ values with time process
slightly higher to k¥ = {5,10} and a bit less for £ = {20, 50}.

It is still applied the Wilcoxon test to evaluate if the per-
formance between SSDP and SD was statistically significant.
The Wilcoxon is a non-parametric test that has been indicated
and used for performance analysis between two algorithm [24]
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Fig. 3. Time average for SSDP, SD, ExaustiveK, RandomIM and Random2M
in 126 microarray databases for different k values.

[16]. Table V shows the result. In this way the null-hypothesis
that SSDP perform equally well as SD are rejected for all k£
values for level of significance oo = 0.01.

TABLE V
RESULTS OF THE WILCOXON TEST BETWEEN SSDP AND SD

K p-value Hypothesis
5 1.67E-13  Rejected by SSDP
10 5.42E-12  Rejected by SSDP
20 4.29E-10  Rejected by SSDP

50  0.0005933  Rejected by SSDP

An important differential of heuristics in DPs mining pro-
blem is the search capability in larger dimensions. Figure 4
shows the average size of top-k DPs for k = {5, 10, 20,50}
from all algorithms. It shows the more successful of SSDP in
larger dimension search for all k£ values. That is the probably
explanation for more SSDP superiority over other algorithms.

Finally, Figure 5 shows the percentage of samples covered
by top-k DPs for different values k. The tested approaches is
not intended to cover all the positive examples, four of them
obtained SUPP > 80% for k = 5 and SUPP > 90% for
k > 10.
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Fig. 4. Average size for SSDP, SD, ExaustiveK, RandomIM and Random2M
DPs in 126 microarray databases for different k values.
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Fig. 5. Positive support by set of top-k DPs returned by Exaustivek,
RandomIM and Random2M DPs in 126 microarray databases for different
k values.

The exact values of Qg, time, size, SUPP average
and other metrics as support and confidence average in
all databases for K = {5,10,20,50} can be seen in Ta-
bles VI,VIL VIII and IX, respectively. It can be seen that SSDP
also obtained DPs with greater confidence and support for all
k values.

TABLE VI
Qg, time, size, supp, conf AND SU PP AVERAGE FOR 126
MICROARRAY DATABASES FOR k = 5.

K=5
Algorithm Qg time size conf supp SUPP
SSDP  33.12 940 204 1.00 0.53 0.83
SD  26.73 334 140 1.00 045 0.79
ExaustiveK ~ 22.57 0.14 135 099 042 0.78
RandomIM  24.49 487 164 1.00 042 0.82
Random2M  25.16 1132 167 1.00 043 0.83

VII. CONCLUSION

Microarray databases are having a revolutionary impact
on molecular biology. But microarray databases are an high
dimension problem. Discriminative Patterns (DPs) aims to find
humanly interpretable subgroups where the presence of a label



TABLE VII
Qg, time, size, supp, conf AND SU PP AVERAGE FOR 126
MICROARRAY DATABASES FOR k = 10.

K=10

Algorithm Qg time size conf supp SUPP
SSDP  32.82 11.06 2.18 1.00 0.53 0.90

SD  26.71 725 151 1.00 044 0.86
ExaustiveK  22.74 0.14 1.44 1.00 0.41 0.87
RandomIM  22.88 481 1.68 1.00 0.39 0.91
Random2M  23.61 11.23 1.71 1.00 041 0.92

TABLE VIII

Qg, time, size, supp, conf AND SU PP AVERAGE FOR 126
MICROARRAY DATABASES FOR k = 20.

K =20

Algorithm Qg time size conf supp SUPP
SSDP  31.89 1333 227 1.00 0.52 0.94

SD 27.03 1697 165 1.00 045 0.90
ExaustiveK  22.31 0.17 154 1.00 039 0.92
RandomIM  21.07 529 172 099 037 0.96
Random2M  21.71 1253 1.74 099  0.38 0.97

TABLE IX

Qg, time, size, supp, conf AND SUPP AVERAGE FOR 126
MICROARRAY DATABASES FOR k = 50.

K =50
Algorithm Qg time size conf supp SUPP
SSDP 3030 1455 231 1.00 049 0.96
SD 27.62 5181 179 1.00 045 0.93
ExaustiveK  21.79 0.81 1.73 1.00 0.38 0.95
RandomIM  18.77 536 1.80 0.99 0.33 0.99
Random2M  19.52 1246 1.81 0.99 0.35 0.99

vs. others is exaggerated. However, mining best DPs in high
dimensional databases is often computationally infeasible. In
this context, several evolutionary approaches were developed,
but with little focus on high dimensional databases. They
also often use many complex parameters and the user has no
control over the amount of returned DPs.

This paper presented the SSDP, an evolutionary approach to
search the top-k DPs adapted to high dimensional databases
that use only two easily adjustable external parameters and
the user can control the number of DPs returned. SSDP has
as main concepts features: (1) the evolutionary strategy using
concepts of Beam Search and (2) the simple and efficient way
to represent individuals.

SSDP was validated as heuristic and the ability to find
nontrivial DPs. The proposed approach also is superior to SD,
a classical and competitive algorithm based on Beam Search.
This work also showed the SSDP ability to change the focus
of the search for larger or smaller as needed.

Finally, this study is being expanded to: (1) evaluate SSDP
in other types of problems, (2) compare performance with
newer approaches and (3) further experiments with statistical
tests.
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