
Cost-Sensitive Measures of Algorithm Similarity for
Meta-Learning

Carlos Eduardo Castor de Melo
Universidade Federal de Pernambuco

Centro de Informática, Recife, Pernambuco

Email: cecm2@cin.ufpe.br

Ricardo Bastos Cavalcante Prudêncio
Universidade Federal de Pernambuco

Centro de Informática, Recife, Pernambuco

Email: rbcp@cin.ufpe.br

Abstract—Knowledge about algorithm similarity is an impor-
tant aspect of meta-learning, where the information gathered
from previous learning tasks can be used to guide the selection
of algorithms for new datasets. Usually this task is done by
comparing global performance measures across different datasets
or alternatively, comparing the performance of algorithms at the
instance-level. In both cases, the previous similarity measures
do not consider misclassification costs, and hence they neglect
an important information that can be exploited in different
learning contexts. In this paper we present algorithm similarity
measures that deals with cost proportions and different threshold
choice methods for building crisp classifiers from learned models.
Experiments were performed in a meta-learning study with 50
different learning tasks. The similarity measures were adopted
to cluster algorithms according to their aggregated performance
on the learning tasks. The clustering process revealed similarity
between algorithms under different perspectives.

I. INTRODUCTION

Meta-learning is a framework developed in supervised
machine learning for acquiring knowledge from empirical case
studies and relating features of learning problems to algorithm
performance [1]. The knowledge acquired in meta-learning has
been used to support algorithm selection in different contexts
[2] [3]. An important assumption of meta-learning is that
algorithm performance is similar for similar problems. Hence,
to know how similar is the performance obtained by different
algorithms is important for meta-learning. This information
can be used to discover similarities between algorithms and
between datasets [4] and also to support the prediction of
suitable algorithms for a given dataset [3].

Deploying global metrics, such as accuracy and AUC,
to compare the performance of algorithms on a dataset has
been the most common approach to deal with the above
issue. Despite the popularity of this approach, it may lose
important knowledge about algorithm similarity since it is
based on average algorithm performance without considering
differences of algorithm behaviour in an instance-level. In
order to overcome this limitation, alternative measures of
algorithm similarity (e.g., error correlation [4] or classifier
output difference [5]) have been adopted. Here, algorithms are
considered similar if they produce the same results on the same
instances.

Algorithm similarity measures adopted in these previous
work are limited since they are not flexible enough to consider
different misclassification costs and different strategies to
build classifiers. Algorithms usually produce models (scoring

functions) that return scores or class probabilities for the
input examples. A classifier is then built from a model by
adopting a decision threshold. The prediction for a given
example depends on both the score returned by the learned
model for that example and the decision threshold. It is very
common to adopt a fixed decision threshold (e.g., 0.5) to
produce classifiers. Alternatively, decision thresholds can be
chosen according to the operating conditions or contexts (e.g.,
class frequencies and misclassification costs) observed when
the learned model is deployed. In [6], the authors showed
that different threshold choice methods require the use of
different performance measures to evaluate a learned model.
Similarly, concerning algorithm similarity, specific measures
have to be defined when misclassification costs and adaptive
threshold choice methods are taken into account. Previous
work on algorithm similarity measures does not consider
such aspects. The previous similarity measures are defined
implicitly assuming fixed decision thresholds and thus are only
suitable for comparing the performance of crisp classifiers.

Based on the above motivation, we developed similarity
measures for algorithm performance taking into account cost
proportions and different threshold choice methods. As in [2],
we adopted an instance-level strategy. For that, we initially
proposed instance hardness measures to indicate how difficult
is an instance to be correctly classified by a model. Specific
instance hardness measures were proposed for two threshold
choice methods: (1) score-driven method [7]; and (2) rate-
driven method [8]. By assuming a threshold choice method and
a learned model, we built for each instance a corresponding
cost curve, which indicates the model loss for that instance
along different misclassification costs. The instance hardness
is defined as the area under the cost curve. The dissimilarity1

between two algorithms for a given dataset is defined as the
average absolute difference between the hardness values over
all instances of the dataset.

In our work, we applied the proposed measures in a meta-
learning study in which 50 datasets and 8 learned models were
adopted. Clusters of models were produced by adopting both
the score-driven and the rate-driven measures. Each cluster re-
veals which algorithms produced similar learned models on the
50 datasets under each cost-sensitive perspective. We observe
that the algorithm behaviour among the datasets was quite
distinct by using the score-driven and rate-driven measures.

1In this paper we treat dissimilarity as the complement of similarity,
henceforth we will use only the latter term

2014 Brazilian Conference on Intelligent Systems

978-1-4799-5618-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BRACIS.2014.13

7

2014 Brazilian Conference on Intelligent Systems

978-1-4799-5618-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BRACIS.2014.13

7

II. MEASURING ALGORITHM SIMILARITY

Meta-learning deals with methods to exploit knowledge
gathered from learning on different tasks [1]. Differently from
base-level learning, which focuses on acquiring experience on
a single task, meta-learning acquires knowledge from a meta-
data set produced when a pool of algorithms is applied on
distinct learning tasks. Given a learning task, a meta-example
usually stores characteristics of the task and the performance
obtained by a pool of candidate algorithms. Meta-learning
can be applied: (1) in a descriptive sense aiming to discover
similarities between datasets and algorithms and (2) in a
predictive sense to select candidate algorithms for new datasets
based on the knowledge acquired in the meta-learning process.

Different meta-learning approaches rely on the use of
similarity measures of algorithm performance. For instance,
clustering algorithms based on their performance can provide
useful information to guide algorithm selection and combi-
nation [4], [5]. As another line of research, we can cite the
landmarking approach [3], which uses the performance of
simple algorithms (called landmarkers) to guide the selection
of more complex ones. In this approach, datasets are charac-
terized based on the performance obtained by the landmarkers
(which are usually simple and diverse algorithms, such as
decision stumps and linear models). Given a new dataset,
the most similar meta-examples are retrieved from the meta-
data based on the similarity of performance obtained by the
landmarkers. The best candidate algorithms adopted in the
retrieved problems are then suggested for the new dataset.

The most common approach for measuring algorithm simi-
larity is the use of global performance measures, like accuracy,
estimated from an empirical evaluation process (such as cross-
validation). Similarity between algorithms can be obtained by
computing the differences or ratios between the performance
measures, as performed in [9]. Although this approach is
widely applied, it is strongly criticized since it may lose
important information about algorithms behaviour and may not
characterize similarity properly. For example, if a dataset has
100 instances and a given algorithm misclassifies 20 instances
and another one misclassifies 20 instances completely different
from the first ones, the accuracy of both algorithms will be the
same but their behaviour is quite different.

A more fine-grained approach to algorithm similarity is to
consider the performance at each instance of the dataset. This
approach has the advantage of showing local discrepancies
of performance among the space of instances. In [4], error
correlation is adopted as similarity measure between two
algorithms, in such a way that two algorithms are similar with
they produce the same errors. In [5], the authors present the
measure Classifier Output Difference (COD) as an alternative
for this approach. This metric is defined as the probability of
two distinct classifiers make different predictions [10].

Although this approach represents a more refined view
about algorithm performance, the measures proposed in the
literature are computed from predictions generated by crisp
classifiers (i.e., with fixed decision thresholds chosen a priori).
However as stated in section I, in the context of misclassifi-
cation costs, decision thresholds can be adaptively defined to
minimize the loss of a learned model. Hence, two instances
considered equally easy by a classifier with a fixed threshold

can be rather difficult under different decision thresholds and
costs. In this work, we derived similarity measures for algo-
rithm performance in cost sensitive scenarios, by considering
different methods to choose decision thresholds of classifiers
based on the knowledge about misclassification costs.

III. NOTATION AND BASIC DEFINITIONS

The basic definitions adopted in our work are mostly based
on [6]. Instances can be classified into one of the classes Y =
{0, 1}, in which 0 is the positive class and 1 is the negative
class. A learned model m is a scoring function that receives
an instance x as input and returns a score s = m(x) that
indicates the chance of a negative class prediction. A model
can be transformed in a crisp classifier assuming a decision
threshold t in such a way that if s ≤ t then x is classified as
positive, and it is classified as negative if s > t.

The errors of a classifier are associated to costs related to
the classes. The cost of a false negative is represented as c0
and the cost of a false positive in turn is represented as c1.
As in [6], we normalize the costs by setting c0 + c1 = b and
adopt the cost proportion c = c0/b to represent the operating
condition faced by a model this deployment. For simplicity, we
adopted b = 2 and hence c ∈ [0, 1], c0 = 2c and c1 = 2(1−c).

The loss function produced assuming a decision threshold
t and a cost proportion c is defined as:

Q(t, c) = c0π0FN(t) + c1π1FP (t)

= 2{cπ0FN(t) + (1− c)π1FP (t)} (1)

In the above equation FN(t) and FP (t) are respectively
the False Negative and False Positive rates produced by a
model when a threshold t is adopted. The variables π0 and
π1 represent the proportion of positive and negative examples.

The Positive Rate R(t) is the proportion of instances
predicted as positive at the decision threshold t and can be
expressed as π0(1− FN(t)) + π1FP (t).

IV. INSTANCE HARDNESS AND COST CURVES

In Eq. 1, the loss produced by a classifier is an aggrega-
tion of the errors observed for the positive and the negative
instances. A positive instance will be associated to a cost
2c when it is incorrectly classified. An error for a negative
instance in turn will be associated to a cost 2(1− c).

In our work, we decompose Eq. 1 to derive the loss
functions for individual instances. The individual loss for a
positive instance x is defined as:

QI(x, t, c) = 2cFN(x, t) (2)

In the above equation, FN(x, t) = 1 if x is a false negative
when threshold t is adopted and FN(x, t) = 0 otherwise. A
similar definition of loss function can be done for a negative
instance x:

88

QI(x, t, c) = 2(1− c)FP (x, t) (3)

In the above equation, FP (x, t) = 1 is x is a false positive
at threshold t and FP (x, t) = 0 otherwise.

Given a threshold choice method, QI(x, t, c) produce a
specific curve for the example x along the range of operating
conditions (c ∈ [0, 1]). The instance hardness measures in
our work are defined as the area under the individual cost
curves and compute the total expected loss for the range of
operation conditions. In the general case, given a threshold
choice method t = T (c), the hardness of an instance is:

IHT (x) =

∫ 1

0

QI(x, T (c), c)w(c)dc (4)

In the above equation, w(c) represents the distribution of
c. In our work, we derived the instance hardness measures for
different threshold choice methods assuming uniform distribu-
tion of cost proportions.

A. Score-Driven Instance Hardness

In the score-driven method [7], the decision threshold t is
defined by simply setting it equal to the operating condition c:

T (c) = c (5)

For instance, if c = 0.7, the cost of false negatives are
higher than the costs of false positives. In this case by setting
t = c = 0.7 the produced classifier tends to predict more
instances as positive, thus minimizing the relative number of
false negatives. According to [7], the score-driven method is a
natural choice when the model scores are assumed to be class
probability estimators and the scores are well calibrated.

Under the score-driven method, we can derive the loss
function for positive instances as follows:

FN(x, c) =

{
1, if s > c
0, otherwise

(6)

Replacing FN(x, c) in Eq. 2 we have the following score-
driven cost curve for a positive instance:

QI(x, t, c) =

{
2c, if s > c
0, otherwise

(7)

Fig. 1(a) illustrates the score-driven cost curve for a posi-
tive instance with score s. For s ≤ c no cost is assumed; on
the other hand, the cost varies linearly. The area under the cost
curve is defined as an instance hardness measure:

IHsd(x) =

∫ s

0

2c dc =
[
c2
]s
0
= s2 (8)

Since y = 0 for positive instances, the above measure can
be replaced by (y−s)2, which correspond to the squared-error
obtained by the model.

Eq. 9 and 10 define the score-driven cost curve for negative
instances. Figure 1(c) illustrates this curve when the negative
instance has a score s.

FP (x, c) =

{
1, if s ≤ c
0, otherwise

(9)

QI(x, t, c) =

{
2(1− c), if s ≤ c
0, otherwise

(10)

Similar to the positive instance, instance hardness for a
negative instance is defined as the area under the cost curve:

IHsd(x) =

∫ 1

s

2(1− c) dc =
[
2c− c2

]1
s
= (1− s)2 (11)

For negative instances we have y = 1 and then the above
measure corresponds to (y− s)2. Hence, for both positive and
negative instances, hardness is defined as the squared-error
obtained by the model.

Fig. 1. Instance cost curves for an instance assuming the rate-driven and
score-driven methods.

B. Rate-Driven Instance Hardness

According to [8], the score-driven method is sensitive to
the estimation of the scores. For instance, if the scores are
highly concentrated, a small change in the operating condition
(and consequently in the decision threshold) may drastically
affect the classifier performance. As an alternative, in [8] the
authors proposed to use the proportion of instances predicted
as positive (i.e., R(t)) to define the decision thresholds.

In the rate-driven method, the decision threshold is set
to achieve a desired proportion of positive predictions. The
threshold choice method is defined as:

99

T (c) = R−1(c) (12)

For instance, if c = 0.7 the threshold t is set in such a
way that 70% of the instances are classified as positive. The
operating condition c is then expressed as the desired positive
rate: c = R(t). The probability of a false negative under the
rate-driven choice method can be defined as:

FN(x,R−1(c)) =

{
1, if s > R−1(c)
0, otherwise

(13)

Replacing FN(x,R−1(c)) in Eq. 2 we have the following
rate-driven cost curve for a positive instance:

QI(x, t, c) =

{
2c, if s > R−1(c)
0, otherwise

(14)

Fig. 1(b) illustrates the rate-driven cost curve for a positive
instance with a score s. For s ≤ R−1(c), or alternatively for
R(s) ≤ c, no cost is assumed. When R(s) > c, the cost of
the instance varies linearly. The area under the rate-driven cost
can be adopted as an instance hardness measure:

IHrd(x) =

∫ R(s)

0

2c dc =
[
c2
]R(s)

0
= R(s)2 (15)

The above measure states that the instance hardness is
related to position of the instance in the ranking produced by
the learned model. The worse is the ranking of the positive
instance, the higher is the instance hardness.

Eq. 16 and 17 define the rate-driven cost curve for negative
instances with score s, illustrated in Figure 1(d).

FP (x,R−1(c)) =

{
1, if s ≤ R−1(c)
0, otherwise

(16)

QI(x, t, c) =

{
2(1− c), if s ≤ R−1(c)
0, otherwise

(17)

Similar to the positive instance, instance hardness for a
negative instance is defined as the area under the cost curve:

IHrd(x) =

∫ 1

R(s)

2(1− c) dc =
[
2c− c2

]
R(s)1

= (1−R(s))2

(18)

Notice that (1−R(s)) corresponds to the negative rate of
a classifier at the point s. The instance hardness for negative
instances is then related to the ranking of the most likely
negative instances produced by the learned model.

Different from the score-driven method, which measures
the magnitude of the errors obtained by a model, the rate-
driven method is more related to ranking performance. By
adopting the score-driven method, an instance is considered
hard if its score is not well calibrated. On other hand, the same
instance may be easy by assuming the rate-driven method if it

is well ranked relative to the other instances. Instance hardness
by adopting the score-driven method only depends on the score
of the instance. Instance hardness by adopting the rate-driven
method in turn depends not only on the instance score but also
on how the other instances are ordered.

V. COST SENSITIVE ALGORITHM SIMILARITY

The application of global metrics fails to properly measure
algorithm similarity since it is based on average performance,
loosing important information during the evaluation process.
More fine-grained measures provide a solution for this limi-
tation by verifying the algorithm performance at the instance
level. However, the proposed measures are not well defined
when misclassification costs are involved.

In this work, we derived different measures for algorithm
similarity based on the concept of instance hardness. Given
a pair of learned models, they will be similar if the hardness
values computed on a test set by using the two models are
similar. More specifically, in order to relate two models, we
initially collect the scores produced by them on a test set of
instances. Following, we compute the hardness value for each
test instance considering each model. Finally, the similarity
between the models is defined by aggregating the instance
hardness values as follows:

D(ma,mb, D) =
1

|D|
∑
x∈D

|IHT
ma

(x)− IHT
mb

(x)| (19)

The above equation measures the pairwise distance be-
tween models ma and mb for each instance x belonging to
the test set D. In our work, in order to deal with costs, we
derived in the previous section two distinct instance hardness
by adopting different threshold choice methods T . By adopting
the score-driven method, two models will be similar with
their scores are similar (the squared-errors produced by the
models are similar at instance level). By adopting the rate-
driven method in turn two models will be similar if the test
instances are similarly ranked. The two methods correspond
to two different evaluation strategies. Other instance hardness
measures and their corresponding algorithm similarity mea-
sures can be developed in the future by considering other
threshold choice methods, such as the probabilistic ones [6].

Once we have the algorithm similarity measure on a single
dataset, we can compute the overall similarity over different
datasets in order to achieve a wider view about the relative
performance of algorithms. There are many strategies to do
this aggregation, such as the use of the median or the average
similarity as well as other consensus similarity methods [11]
that can be taken over all datasets involved. In this work, we
adopt a simple aggregation strategy by computing the average
dissimilarities measured over all datasets observed:

A(ma,mb) =
1

N

N∑
j=1

D(ma,mb, Dj) (20)

In the above equation, N stands for the number of datasets
available for measuring algorithm similarity. As it will be seen

1010

next section, this measure will be adopted in a case study to
cluster algorithms based on average similarity over a set of
learning tasks.

VI. EXPERIMENTAL SETUP

In order to achieve a good diversity of problems, we
computed the instance hardness on a group of 50 datasets2

representing problems of binary classification. Most problems
were collected from the UCI repository.

We compare the performance of 6 algorithms available on
the Scikit-Learn Project3. The scores for each instance were
calculated using a 10-fold cross-validation. Usually, the clas-
sification algorithms return the label predicted for an informed
example but to produce real-values scores (varying between 0
and 1)for the input instances, we adopted specific procedures
for each algorithm. For the Nearest Neighbors (KNN), the
score returned is the number of neighbors belonging to the
negative class divided by K. The procedure used for the
Random Forest (RF) is similar: we count the number of votes
for the negative class and divide this by the number of trees in
the forest. For the Decision Tree (DT), Naive Bayes (NB) and
Logistic Regression (LR) the score represents the probability
of the instance being negative. For the Support Vector Machine
(SVM), we get the decision function output and normalize it
between 0 and 1.

In order to have a reference point, we compare variations of
algorithm at the clustering process. For the KNN, we applied
the algorithm with 3 and 5 nearest neighbors (3NN and 5NN)
and for the SVM, we adopted the experiments with the linear
and RBF kernel functions(SVM LIN and SVM RBF, respec-
tively). We expect that the models learned with variations of a
same algorithm will be clustered together. In order to cluster
the results obtained by the similarity measures, we applied the
agglomerative hierarchical clustering method with the average
linkage function[12].

VII. DATASET ALGORITHM SIMILARITY

After computing the scores for all datasets instances, we
use the results to calculate the instance hardness measures
for the two threshold choice methods presented in section IV.
Then we measure the pairwise distance among the models for
each dataset using the equation 19. In order to illustrate the
use of the proposed measures, we initially presented the results
obtained by a single dataset (the Ecoli dataset). Next section
will present the clustering results obtained by considering all
the collected datasets.

TABLE I. MEAN INSTANCE HARDNESS MEASURES FOR ECOLI

DATASET

Model IHrd IHsd

3NN 0,269 0,0694

5NN 0,2583 0,0583

DT 0,2858 0,0774

LR 0,252 0,0671

NB 0,2585 0,1949

RF 0,256 0,051

SVM LIN 0,2554 0,1828

SVM RBF 0,2553 0,1811

2The list of datasets used is available at http://www.cin.ufpe.br/∼cecm2
3Available at http://scikit-learn.org/stable/

Table I presents the average instance hardness measures
for the Ecoli dataset. The average hardness values observed
suggest that the models are better at calibrating scores than
at ranking instances for this dataset. In fact, the score-driven
instance hardness measures are in general smaller than the
rate-driven ones. Also, large differences in the quality of scores
produced by some algorithms do not reflect in large differences
in the ranking quality. For instance, although the NB produced
the worst result for the score-driven method, its results for the
rate-driven method are similar to the other algorithms.

Figures 2 and 3 present the dendrograms derived from
the clustering process by adopting the proposed measures for
the Ecoli dataset. The cluster formed by the SVM models is
observed in both cases. The remaining clusters have a slight
difference. In the score-driven method the NB model is a
cluster by itself, but in the rate-driven case NB was considered
similar to LR (i.e., they produced similar rankings of instances
although their scores are different). In both cases, the KNN
and the RF models were considered similar, which can be
supported in [13].

Fig. 2. Clustered score-driven performance for the models learned on the
Ecoli dataset

Fig. 3. Clustered rate-driven performance for the models learned on the Ecoli
dataset

VIII. AGGREGATED ALGORITHM SIMILARITY

In order to have a better view about the algorithms sim-
ilarities, we applied the equation 20 to compute the average
distance between algorithms across the 50 datasets adopted
in our experiments. Figure 4 presents the dendrogram of algo-
rithms considering the score-driven measure. This dendrogram
shows that the models learned by KNN were the most similar,
as expected. The second most similar pair of models was
produced by the RF and the LR algorithms (with a low
dissimilarity measure around 0.1). Depending on the cut-point
(e.g., 0.3) adopted to produce clusters from the dendrogram,

1111

the DT algorithm is clustered together with 3NN, 5NN, RF
and LR. The models obtained by NB are the ones that present
the most distinct behaviour. Finally, the SVM models are
similar between them (relative to the other algorithms), but
their similarity level is not so high. The change in the kernel
function produced in many datasets very distinct models. Some
of the results derived from the dendrogram are expected (such
as the similarity between 3NN and 5NN). Other results in turn,
such as the similarity between RF and LR, were not expected
and hence have to be better investigated in the future.

Fig. 4. Clustered average score-driven performance

Fig. 5. Clustered average rate-driven performance

Figure 5 displays the dendrogram of algorithms produced
by adopting the rate-driven measure. The algorithms are more
similar to each other when similarity is measured in terms of
ranking quality. As in the score-driven dendrogram, the 3NN,
5NN, DT and RF are clustered together. The algorithms LR,
SVM LIN and NB formed another cluster. Different from the
score-driven dendrogram, we see that the SVM models do not
belong to the same group. Again, a deeper investigation has
been to be done to provide further explanations on why a
given pair of algorithms was similar. In our work, we provide
a general framework that can be extended with new algorithms
and datasets and can be used to identify which algorithms are
similar under different cost-sensitive perspectives.

IX. CONCLUSION

In this work, we proposed similarity measures between
algorithms by considering two threshold choice methods: rate-
driven and score-driven. For each method, we proposed a cor-
responding instance hardness measure that was then deployed
to define the algorithm similarity measure. The similarity
between algorithms can be quite different depending on the
dataset and the cost-sensitive scenario being tackled. For
the score-driven method, two algorithms are similar if they

produce similar scores. For the rate-driven method, in turn,
two algorithms are similar if they produce similar rankings of
instances.

In order to infer overall similarity on different datasets,
we computed the average similarity between algorithms over
50 datasets and performed clustering of algorithms. The results
revealed some unexpected similarities that can serve as starting
points for further investigations to discover and explain hidden
relationships between algorithms and learning strategies.

As future work, the ideas presented here can be applied
on a predictive meta-learning strategy to select algorithms for
new datasets depending on the threshold choice method and
the input costs. In our work, we aggregate similarity across
datasets using the mean method, which is simple but possibly
naive. Other consensus similarity methods can be investigated.
Finally, we highlight that our work is very limited concerning
the number of algorithms and datasets adopted. Hence, more
extensive meta-learning studies can be done in the future, with
stronger conclusions and insights.

ACKNOWLEDGEMENT

This research is supported by CNPq, CAPES and FACEPE
(Brazilian agencies).

REFERENCES

[1] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to Data Mining, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[2] T. M. Michael R. Smith and C. Giraud-Carrier, “An instance level
analysis of data complexity,” Machine Learning, 2013.

[3] R. Leite, P. Brazdil, and J. Vanschoren, “Selecting classification algo-
rithms with active testing,” in Machine Learning and Data Mining in
Pattern Recognition. Springer, 2012, pp. 117–131.

[4] A. Kalousis, J. Gama, and M. Hilario, “On data and algorithms:
Understanding inductive performance,” Machine Learning, pp. 275–
312, 2004.

[5] J. Lee and C. Giraud-Carrier, “A metric for unsupervised metalearning,”
Intelligent Data Analysis, vol. 15, pp. 827–841, 2011.

[6] J. Hernández-Orallo, P. Flach, and C. Ferri, “A unified view of perfor-
mance metrics: Translating threshold choice into expected classification
loss,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 2813–2869, Oct. 2012.

[7] ——, “Brier curves: A new cost-based visualisation of classifier per-
formance,” in Proceedings of the 28th International Conference on
Machine Learning, 2011.

[8] ——, “ROC curves in cost space,” Machine Learning, vol. 93, no. 1,
pp. 71–91, Feb. 2013.

[9] J. Fürnkranz and J. Petrak, “An evaluation of landmarking variants,”
in Working Notes of the ECML/PKDD 2000 Workshop on Integrating
Aspects of Data Mining, Decision Support and Meta-Learning, 2001,
pp. 57–68.

[10] A. Peterson and T. Martinez, “Estimating the potential for combining
learning models,” Proceedings of the ICML workshop on meta-learning,
2005.

[11] F. de A.T. de Carvalho, Y. Lechevallier, and F. M. de Melo, “Relational
partitioning fuzzy clustering algorithms based on multiple dissimilarity
matrices,” Fuzzy Sets and Systems, vol. 215, no. 0, pp. 1 – 28, 2013,
theme : Clustering.

[12] C. Ding and X. He, “Cluster merging and splitting in hierarchical
clustering algorithms,” Data Mining, 2002. ICDM 2003. Proceedings.
. . . , pp. 139–146, 2002.

[13] Y. Lin and Y. Jeon, “Random forests and adaptive nearest neighbors,”
Journal of the American Statistical Association, vol. 101, no. 474, pp.
578–590, 2006.

1212

