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Abstract—Semi-supervised learning is a challenging topic in
machine learning that has attracted much attention in recent
years. The availability of huge volumes of data and the work
necessary to label all these data are two of the reasons that
can explain this interest. Among the various methods for semi-
supervised learning, the co-training framework has become
popular due to its simple formulation and promising results.
In this work, we propose Co-MLM, a semi-supervised learning
algorithm based on a recently supervised method named Minimal
Learning Machine (MLM), built upon co-training framework.
Experiments on UCI data sets showed that Co-MLM has
promising performance in compared to other co-training style
algorithms.

I. INTRODUCTION

Today, most electronic devices such as smart phones, dig-
ital cameras or smart watches provide a simple way to get
multimedia data. Unfortunately, it is hard to use these data,
because labeling these requires time, money and human effort.
Consequently, Semi-Supervised Learning (SSL) [1], which
explores the capacity of combining unlabeled data with the
labeled ones, becomes an attractive methodology and has
receiving attention of the community to reduce expenses.

Several approaches for SSL have been proposed in recent
years, as generic models [2], graph based models [3], Semi-
Supervised Support Vector Machines (S3VM) [4], and Co-
training [5]. Among this approaches, Co-training is one of the
most attractive ones, considered an important part of multi-
vision learning, obtaining satisfactory results in different areas
as computer-aided diagnosis [6], natural language processing
[7] and image classification [8].

The basic idea behind the classical Co-training is to build
two classifiers with two independent feature sets, which work
together to select the most confident unlabeled data to predict
their labels and augment the set of labeled training examples.
The simplest way of creating the views is to split the original
feature set into two subsets randomly. However, it is important
to note that this can only be done under some assumptions and
these views will be not necessarily independent [9].

The choice of the base learner is extremely important in co-
training. This encouraged many co-training variations based on
supervised methods that have been successful in supervised
learning [10] [11] [12]. Minimal Learning Machine(MLM) is
a recent method proposed by [13], that obtained promising

results compared to other state-of-art methods for supervised
learning, and has gained a lot of attention [14] [15] [16] for
its simplicity and easiness of implementation, in addition, it
has only one hyper parameter to be adjusted. In this paper,
we propose a variation of co-training based on MLM, which
we call Co-MLM. We validate its performance against other
well-known methods based on co-training.

The rest of the article is organized as follows: in section 2,
the works based on co-training are presented; minimal learning
machine and the extension of MLM to SSL are presented in
section 3. Section 4 presents the experimental results for both
UCI and UCF-Phone data sets. In section 5, conclusions and
future works are presented.

II. REVIEW OF CO-TRAINING

The standard co-training algorithm, proposed in [5], oper-
ates in two views (feature subsets) of data. In the classic co-
training methodology, two learners are built using the original
labeled data on each view separately. Then, each learner
predicts the unlabeled samples, selects the most confident
predicted examples and adds these to the training set of the
other learner. After that, using the new examples provided by
the other view, both classifiers are trained again. This loop will
repeats until a stopping criterion or a fixed point is reached.
For this approach, strong assumptions on the feature set are
needed in order to guarantee the success of co-training: (i)
Each view alone is sufficient to learn a good classifier; (ii) the
two views are conditionally independent given the category
(class label).

Given its simplicity, the co-training framework was adapted
to various classifiers and achieved remarkable results. A
single-view co-training method was proposed by Goldman et.
al [17] named Democratic Co-learning (DCL), and does not
need two independent and redundant feature sets. In DCL,
an ensemble of learners is trained with original feature set of
labeled data. This method use majority vote and statistical
confidence interval to label the unlabeled data points and
decides which examples could be added to the labeled data set.
Similarly, Tritraining, was proposed by Zhou and Li et al. [18],
in which three different classifiers are trained on bootstrap
sampled examples.



Later, Li et al. proposed an algorithm called Co-Forest [6],
an ensemble that uses random trees in co-training paradigm. It
begins with a bootstrap sample from the original labeled data
set that are used to train a set of random trees, whose will be
redefined by newly selected examples at each iteration during
the training process. The final prediction will be produced by
majority voting.

Recently, in [19], Liu et al. proposed three variants of the
co-training framework that could be adapted to any classifier.
The variants, named multi-visions, multi-algorithms and multi-
manifolds, are presented and tested in a SVM classifier and
achieved promising results.

III. MINIMAL LEARNING MACHINE

Consider a set of N input points X = {xi}Ni=1, with
xi ∈ RD, and the set of corresponding outputs Y = {yi}Ni=1,
with yi ∈ RS . Presupposing the existence of a continuous
mapping f : X → Y between the input and the output space,
it is possible to estimate f from data with the multi-response
model:

Y = f(X) + R.

The columns of the matrices X and Y correspond to
D inputs and S outputs respectively, and the rows to N
observations. The columns of N × S matrix R correspond
to the residuals.

The MLM is a two-step method designed to reconstruct
the mapping existing between input and output distances and
estimate the response from the configuration of the output
points. In the following, the two steps are discussed.

A. Distance regression

For a selection of reference input points R = {mk}Kk=1

with R ⊆ X and corresponding outputs T = {tk}Kk=1 with
T ⊆ Y , define Dx ∈ RN×K in such a way that its k-th column
d(X,mk) contains the distances d(xi,mk) between the N
input points xi and the k-th reference point mk. Analogously,
define ∆y ∈ RN×K in such a way that its k-th column
δ(Y, tk) contains the distances δ(yi, tk) between the N output
points yi and the output tk of the k-th reference point.

The mapping g between the input distance matrix Dx

and the corresponding output distance matrix ∆y can be
reconstructed using the multi-response regression model:

∆y = g(Dx) + E.

The columns of matrix Dx correspond to the K input vectors
and the columns of matrix ∆y correspond to the K response
vectors, N rows correspond to the observations. The columns
of matrix E ∈ RN×K correspond to K residuals.

Assuming that the mapping g between input and output
distance matrices has a linear structure for each response, the
regression model has the form

∆y = DxB + E. (1)

The columns of K ×K regression matrix B correspond to
the coefficients for K responses.

The mapping matrix B can be estimated by minimizing the
following cost function.

J(B) = ||DxB−∆y||F (2)

Under normal conditions, where the number of selected
reference points is smaller than the number of available points
(i.e., K < N ), the matrix B can be approximated by the usual
least squares estimate:

B̂ = (D′xDx)−1D′x∆y. (3)

For an input test point x ∈ RD whose distances from K
reference input points {mk}Kk=1 are collected in the vector
d(x, R) = [d(x,m1) . . . d(x,mK)], the corresponding esti-
mated distances between it’s unknown output y and the known
outputs {tk}Kk=1 of the reference points are:

δ̂(y, T ) = d(x, R)B̂. (4)

The vector δ̂(y, T ) = [δ̂(y, t1) . . . δ̂(y, tK)] provides an esti-
mate of the geometrical configuration of y and the reference
set T , in the Y-space.

B. Output estimation

The problem of estimating the output y, given the outputs
{tk}Kk=1 of all the reference points and estimates δ̂(y, T ) of
their mutual distances, can be understood as a multilateration
problem [20] to estimate its location in Y .

Numerous strategies can be used to solve a multilateration
problem [21]. From a geometric point of view, locating
y ∈ RS is equivalent to solving an overdetermined set of
K nonlinear equations corresponding to (S + 1)-dimensional
hyper-spheres centered in tk and passing through y.

Given the set of k = 1, . . . ,K hypher-spheres each with
radius equal to δ̂(y, tk)

(y − tk)′(y − tk) = δ̂2(y, tk), (5)

the location of y is estimated from the minimization of the
objective function

J(y) =
K∑

k=1

(
(y − tk)′(y − tk)− δ̂2(y, tk)

)2
. (6)

The cost function has a minimum equal to 0 that can
be achieved if, and only if, y is the solution of (5). If
it exists, such a solution is thus global and unique. Due
to the uncertainty introduced by the estimates δ̂(y, tk), an
optimal solution to (6) can be achieved by any minimizer
ŷ = argmin

y
J(y) like the nonlinear least square estimates

from standard gradient descent methods. In the following, the
Levenberg-Marquardt (LM) method [22] is used.

C. Extension to Classification

For classification, we are still given N input points X =
{xi}Ni=1, with xi ∈ RD, and corresponding class labels L =
{li}Ni=1, with li ∈ {C1, . . . , CS}, where Cj denotes the j-the
class. For S = 2, we have binary classification, whereas for
S > 2 we have multi-class classification.



The MLM can be extended to classification in a straightfor-
ward manner by representing the S class labels using the 1-
of-S encoding scheme. In such approach, a S-level qualitative
variable is represented by a vector of S binary variables or
bits, only one of which is on at a time. In this work, the j-th
component of an output vector yi is set to 1 if li = Cj and 0
otherwise.

In the classification of a test observation x of unknown class
label l ∈ {C1, . . . , CS}, the estimated class l̂ associated to the
output estimate ŷ is l̂ = Cs∗ , in which:

s∗ = argmax
s=1,··· ,S

{ŷ(s)}, (7)

and ŷ(s) denotes the s-th component of the vector ŷ.

D. Extension to SSL: Co-Minimal Learning Machine

Recently, a generic framework for applications related
to co-training was presented in [19]. It proposes three
archetypes of adaptation: multi-visions, multi-algorithms and
multi-manifolds, representing the great variety of existing
modifications. In our approach, we use the first archetype
(multi-vision) to propose a new Co-training variation based
in MLM.

From a given set of N input points X = {xi}Ni=1, with
xi ∈ RD, and the set of corresponding outputs Y = {yi}Ni=1,
with yi ∈ RS . Suppose the data set X̂ = L ∪ U , which
L = {(xi, yi)}li=1 ∈ X × Y are the labeled data and U =
{(xi)}ni=l+1 ∈ X are the unlabeled data. The l first examples
of X̂ are the labeled data and the u = n− l last examples are
unlabeled data, both contained in the training set.

First, the data set X̂ ∈ RN×D is randomly split into two
mutually exclusive subsets of features V1 and V2 with equal
sizes, representing two views in which Vj ∈ RN×D

2 So, two
weak classifiers h1 and h2 with different visions are built
utilizing the original labeled data set. For each classifier, a k
set of reference points are chosen using k-medoids algorithm
[23]. Since the subset of features V1 and V2 are different, it
is expected that different medoids would be chose, thereby
increasing the diversity of classifiers.

Then, each classifier labels all unlabeled data, and together
they select the most confident example for each class to insert
into the labeled data set. To choose the best examples, we
have utilized weighted output of both classifiers based on the
previous classifications schema. In this case, s∗ is calculated
as follows:

s∗ = argmax
s=1...S

2∑
j=1

[Wj ∗ hj,s(Vj(x))] (8)

In which the vector ŷ(j) = [ŷ
(1)
(j) , ŷ

(2)
(j) , ..., ŷ

(S)
(j) ] denotes the

output estimate of the j-th classifier in a 1-of-S output encod-
ing, Vj(x) is the vision j for a observation x, hj,s(Vj(x))
is the output provided by the classifier hj for the class s
for this observation, that is ŷs(j), and Wj is a weight factor
provided on the accuracy of the original labeled data for hj .
The observations with the biggest s∗ for each class are selected

to put in new training data set. This measure was adopted
to put more weight in the decision of the classifier that had
obtained better results, preventing noise accumulation in the
training phase.

After this process, the two weaker classifiers are trained
again, using the augmented training set, with the labeled data
of the previous interaction. This process repeats until both
classifiers converge or a number of retries is reached.

Finally, we will build a strong classifier using the full feature
set and all labeled data provided by H = {h1, h2}, which was
acquired in co-training phase after t-th iterations.

Algorithm 1 Co-MLM

1: procedure FIND H = {h1, h2}
Inputs: training set X̂ = L∪U , where L contains l labeled
training examples and U contains u unlabeled training
examples, and number of k reference points.
Outputs: H = {h1, h2}, l labeled examples.

2: repeat
3: for j=1...2 do
4: Build Vj from Li;
5: Use K-medoids to select K reference points, R,

from Vj and their corresponding outputs, T, from Y, only
from labeled data;

6: Compute Dx: The distance matrix between Vj
and R;

7: Compute ∆y: The distance matrix between Y
and T;

8: Calculate B̂j = (D
′

xDx)−1D
′

x∆y .
9: Compute δ̂(y, T ) = d(x,R)B̂j ;

10: Use T e δ̂(y, T) to find an estimate for y, for
all unlabeled data in U .

11: hj = {Bj , R}
12: end for
13: Calculate Wj for hj(j = 1, 2).
14: Select 1 example for each class, using the rule (8),

and form the new training set, Li+1.
15: until {repetitions} or {convergence} or {U = ∅ }

Return: H = {h1, h2}
16: end procedure

IV. EXPERIMENTS AND RESULTS

This section is composed for descriptions and resolutions of
two experiments. In the first one, we utilized UCF-DataPhone,
a real data set with two sufficient and different visions, to
illustrate the capacity of Semi-Supervised Learning of our
methodology in a real environment. After, we used 8 data sets
from the UCI repository, in order to determine the general
performance of Co-MLM compared to other methods of the
state of art.

A. UCF-iPhone dataset

UCF data set is a set of aerobic actions (biking, climbing,
descending, exercise biking, jump roping, running, standing,
walking and treadmill walking) provided by the University of
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Fig. 1: Comparison between MLM and Co-MLM about the number of interactions in Co-training phase. Initially, both MLB
and CoMLM are trained with 60% of labeled data (54 examples, 27 per class), in each CoMLM interaction is refined adding

2 examples (one per class) and retrained.

Central Florida, recorded from subjects using Apple iPhone
4 smart phone [24]. It was utilized the Inertial Measurement
Unit (IMU) with a 3D accelerometer (accelerometer), angular
velocity (gyroscope), and orientation (magnetometer) for ob-
taining data of movements. The samples was taken at 60Hz,
and manually trimmed to 500 samples, then transformed into
instance with 1500 features representing one action.

In our experiments, we selected the 6 better represented
classes of accelerometer and gyroscope data (45 examples per
class), and done a procedure one-vs-one with this classes,
amounting 15 different data sets. The data collected by the
accelerometer and gyroscope could be understood as two dis-
tinct and sufficient views. Then, 4 data sets with great accuracy
(conditions of sufficiency) and a small mutual information
conditioned to the class (condition of independence) between
the visions were selected to be used in our experiments. We
had calculated the mutual information according to [10]. it was
adopted 10 k-folds cross validation strategy for each data set.
Each fold was divided into three sets: train, test and validation,
and each set contained at least one instance for class. We used
60% of the labeled data of training set to form L and the
remainder to form U . Our intention is to investigate Co-MLM
learning in a real environment as interactions advance.

Figures 1a, 1b, 1c and 1d, demonstrate comparison between
Co-MLM and MLM. It is easy to see that in a general way,

the error gradually decreases to the extent that interactions ad-
vance, showing that under right conditions, Co-MLM presents
a considerable better performance compared to MLM. It is
expecting accuracy variation during interactions, since wrong
data could be added in a interaction, however it is important
to note that as the interactions advance, the data correctly
classified tend to offset the noise accumulation.

B. UCI Data sets

Initially, 8 data sets from UCI repository [25] with different
sizes and number of features were chosen.It was adopted the
same methodology in the last experiment, however to form
the set X̂ = L ∪ U , it was used 20%, 40%, 60% and 80% of
training data to compose L, and the rest to compose U . Data
formatting can be seen in the Table I.

It have been chosen 3 semi-supervised learning well known
methods based on Co-training: Co-forest [6], Tritraining [18]
and standard Co-training [5]. The base classifiers of Tritraining
and co-training were respectively j48 and knn. To promote a
fair comparison, all the hyper parameters have been adjusted
according to validation set: to Co-forest, the number of clas-
sifiers and the confidence interval; to Tritraining (j48), the
confidence interval and the number of instances per leaf; and to
Co-training (Knn), the number of nearest neighbors for both
classifiers. Co-forest and Tritraining were provided utilizing
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Fig. 2: The average precision of different methods and percent of labeled data.

TABLE I: Description of data sets.

Data set Instances Features Class
car 1724 6 4

g10n 548 10 2
german 998 24 2

sat 1994 36 6
dbworld 62 4702 2

g50c 548 50 2
optdigits 1787 64 10

uspst 1997 256 10

WEKA data mining tool [26]. Co-MLM and Co-training were
implemented in MATLAB, since the purpose of this article
is to ascertain accuracy, not speed, the difference in language
does not interfere the evaluation.

The number of repetitions and instances selected by inter-
action are important factors for good performance for methods
based on co-training. A few repetitions could add no relevant
information, while a lot of repetitions could add noise. In our
experiment, we choose utilizing 5 interactions for Co-MLM.
A small number of interaction was chosen to avoid adding
noise to data. The number of the selected examples was one
example per class. Co-forest and Tritrainig does not use a
preestablished number of interactions, their process only finish
when some internal classifiers presents any significant change,
while the number of added samples due to a threshold. In this
experiment, Co-training also utilize 5 interactions, selecting 1
example of each class for each classifier, forming a total of
up to two examples per class for each interaction.



As expected, Tritraining and Co-training obtained less sat-
isfactory results in relation to Co-MLM and Co-Forest, since
those are simpler methods. It is possible to observe bad results
for Co-training when the data sets does not contain a lot of
features, as seen in Figures 2a, 2d and 2e or a sufficient
initial accuracy, Figure 2b. This paradigm change in Figures
2c, 2f, 2g and 2h. It is expected more independence among
the visions with many features, and with high initial accuracy,
the classifiers could be enough to produce good results. The
same factor occurs to Co-MLM, but it demonstrated been more
robust, once it got better results than Co-training in data sets
with a few features, as seen in Figures 2a, 2d and 2e, or
accuracy 2b. Co-forest presented, in general, similar results
than Co-MLM, but once Co-forest is an ensemble method,
many classifiers are requested, while for Co-MLM, only two
are required, ordering less computational effort. Tritraining
presented certain irregularities, as seen in Figures 2e, 2f and
2b, in which increasing the number of labeled data detracted
the performance. It could be explained with the number of
labeled data: the bigger it is, the bigger will be the trust rating
and more examples will be added; but not necessarily there are
correct examples. This shows the great irregularity in SSL [3]
[27]. It is worth noting however, that CoForest and Co-MLM
not presented this irregularities.

V. CONCLUSION

This paper proposed an adaptation of Minimal Learning
Machine for the semi-supervised paradigm. Empirical analysis
validates Co-MLM’s learning capabilities for unlabeled data
and performance gain of Co-MLM regarding MLM under
certain conditions.

Furthermore, We showed that Co-MLM presents an at-
tractive alternative to other state-of-the-art SSL algorithms,
presenting similar performance and having only one hyper
parameter to be tuned.

However, Co-MLM may present noise accumulation in
co-training phase. Best ways to select the most confident
observations will be proposed in future works.
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